skip to main content


Search for: All records

Creators/Authors contains: "Mukherjee, Biswanath"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. To accommodate the growing demand for cloud services, telecom carriers’ networks and datacenter (DC) facilities form large network–cloud ecosystems (ecosystems for short) physically supporting these services. These large-scale ecosystems are continuously evolving and must be highly resilient to support critical services. Open and disaggregated optical-networking technologies promise to enhance the interoperability across telecom carriers and DC operators, thanks to their open interfaces in both the data plane and control/management plane. In the first part of this paper, we focus on a single entity (e.g., a telecom carrier or an emerging telecom/DC partnership company) that owns both the network and DC infrastructures in the ecosystem. We introduce a solution by leveraging open and disaggregated technologies to enhance the resilience of the optical networks within a multi-vendor and multi-domain ecosystem. In the second part of this paper, we consider the case when the networks and DCs are owned by different entities. Also, in this case, cooperation among datacenter providers (DCPs) and carriers is crucial to provide failure/disaster resilience to today’s cloud services. However, such cooperation is more challenging since DCPs and carriers, being different entities, may not disclose confidential information, e.g., detailed resource availability. Hence, we introduce a solution to enhance the resilience of such multi-entity ecosystems through cooperation between DCPs and carriers without violating confidentiality.

     
    more » « less
  2. We investigate the problem of enhancing the resilience of future optical network-cloud ecosystems. We introduce new solutions to build disaster-resilient single-and multi-entity network-cloud ecosystems with openness, disaggregation, and cooperation between networks and clouds.

     
    more » « less
  3. null (Ed.)
  4. Efficient resource allocation and management can enhance the capacity of an optical backbone network. In this context, spectrum retuning via hitless defragmentation has been presented for elastic optical networks to enhance efficient spectrum accommodation while reducing the unused fragmented spaces in the spectrum. However, the quality of service committed in a service level agreement may be affected due to spectrum retuning. In particular, for transmission beyond the conventional C band, the presence of inter-channel stimulated Raman scattering can severely degrade the quality of the signal during defragmentation. To conquer this problem, this paper proposes, for the first time to our knowledge, a signal-quality-aware proactive defragmentation scheme for theC+Lband system. The proposed scheme prioritizes the minimization of the fragmentation index and quality of transmission (QoT) maintenance for two different defragmentation algorithms, namely, nonlinear-impairment (NLI)-aware defragmentation (NAD) and NLI-unaware defragmentation (NUD). We leverage machine learning techniques for QoT estimation of ongoing lightpaths during spectrum retuning. The optical signal-to-noise ratio of a lightpath is predicted for each choice of spectrum retuning, which helps to monitor the effect of defragmentation on the quality of ongoing lightpaths (in terms of assigned modulation format). Numerical results show that, compared to a baseline algorithm (NUD), the proposed NAD algorithm provides up to 15% capacity increment for smaller networks such as BT-UK, while for larger networks such as the 24-node USA network, a capacity benefit of 23% is achieved in terms of the number of served demands at 1% blocking.

     
    more » « less
  5. Optical network failure management (ONFM) is a promising application of machine learning (ML) to optical networking. Typical ML-based ONFM approaches exploit historical monitored data, retrieved in a specific domain (e.g., a link or a network), to train supervised ML models and learn failure characteristics (a signature) that will be helpful upon future failure occurrence in that domain. Unfortunately, in operational networks, data availability often constitutes a practical limitation to the deployment of ML-based ONFM solutions, due to scarce availability of labeled data comprehensively modeling all possible failure types. One could purposely inject failures to collect training data, but this is time consuming and not desirable by operators. A possible solution is transfer learning (TL), i.e., training ML models on a source domain (SD), e.g., a laboratory testbed, and then deploying trained models on a target domain (TD), e.g., an operator network, possibly fine-tuning the learned models by re-training with few TD data. Moreover, in those cases when TL re-training is not successful (e.g., due to the intrinsic difference in SD and TD), another solution is domain adaptation, which consists of combining unlabeled SD and TD data before model training. We investigate domain adaptation and TL for failure detection and failure-cause identification across different lightpaths leveraging real optical SNR data. We find that for the considered scenarios, up to 20% points of accuracy increase can be obtained with domain adaptation for failure detection, while for failure-cause identification, only combining domain adaptation with model re-training provides significant benefit, reaching 4%–5% points of accuracy increase in the considered cases.

     
    more » « less
  6. We investigate cost-efficient upgrade strategies for capacity enhancement in optical backbone networks enabled by C+L-band optical line systems. A multi-period strategy for upgrading network links from the C band to the C+L band is proposed, ensuring physical-layer awareness, cost effectiveness, and less than 0.1% blocking. Results indicate that the performance of an upgrade strategy depends on efficient selection of the sequence of links to be upgraded and on the time instant to upgrade, which are either topology or traffic dependent. Given a network topology, a set of traffic demands, and growth projections, our illustrative numerical results show that a well-devised upgrade strategy can achieve superior cost efficiency during the capacity upgrade to C+L enhancement.

     
    more » « less
  7. null (Ed.)
    Resource re-provisioning during network upgrade from C to C+L bands can optimize resource allocation and postpone upgrade cost. Results show re-provisioning shorter lightpaths to L band leads to a more cost-effective upgrade 
    more » « less
  8. null (Ed.)